Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 17752, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853020

RESUMO

The use of neurofeedback is an important aspect of effective motor rehabilitation as it offers real-time sensory information to promote neuroplasticity. However, there is still limited knowledge about how the brain's functional networks reorganize in response to such feedback. To address this gap, this study investigates the reorganization of the brain network during motor imagery tasks when subject to visual stimulation or visual-electrotactile stimulation feedback. This study can provide healthcare professionals with a deeper understanding of the changes in the brain network and help develop successful treatment approaches for brain-computer interface-based motor rehabilitation applications. We examine individual edges, nodes, and the entire network, and use the minimum spanning tree algorithm to construct a brain network representation using a functional connectivity matrix. Furthermore, graph analysis is used to detect significant features in the brain network that might arise in response to the feedback. Additionally, we investigate the power distribution of brain activation patterns using power spectral analysis and evaluate the motor imagery performance based on the classification accuracy. The results showed that the visual and visual-electrotactile stimulation feedback induced subject-specific changes in brain activation patterns and network reorganization in the [Formula: see text] band. Thus, the visual-electrotactile stimulation feedback significantly improved the integration of information flow between brain regions associated with motor-related commands and higher-level cognitive functions, while reducing cognitive workload in the sensory areas of the brain and promoting positive emotions. Despite these promising results, neither neurofeedback modality resulted in a significant improvement in classification accuracy, compared with the absence of feedback. These findings indicate that multimodal neurofeedback can modulate imagery-mediated rehabilitation by enhancing motor-cognitive communication and reducing cognitive effort. In future interventions, incorporating this technique to ease cognitive demands for participants could be crucial for maintaining their motivation to engage in rehabilitation.


Assuntos
Imaginação , Neurorretroalimentação , Humanos , Retroalimentação , Estimulação Luminosa , Imaginação/fisiologia , Encéfalo/fisiologia , Imagens, Psicoterapia , Neurorretroalimentação/métodos , Eletroencefalografia
3.
Brain Sci ; 11(11)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34827392

RESUMO

This study is aimed at the detection of single-trial feedback, perceived as erroneous by the user, using a transferable classification system while conducting a motor imagery brain-computer interfacing (BCI) task. The feedback received by the users are relayed from a functional electrical stimulation (FES) device and hence are somato-sensory in nature. The BCI system designed for this study activates an electrical stimulator placed on the left hand, right hand, left foot, and right foot of the user. Trials containing erroneous feedback can be detected from the neural signals in form of the error related potential (ErrP). The inclusion of neuro-feedback during the experiments indicated the possibility that ErrP signals can be evoked when the participant perceives an error from the feedback. Hence, to detect such feedback using ErrP, a transferable (offline) decoder based on optimal transport theory is introduced herein. The offline system detects single-trial erroneous trials from the feedback period of an online neuro-feedback BCI system. The results of the FES-based feedback BCI system were compared to a similar visual-based (VIS) feedback system. Using our framework, the error detector systems for both the FES and VIS feedback paradigms achieved an F1-score of 92.66% and 83.10%, respectively, and are significantly superior to a comparative system where an optimal transport was not used. It is expected that this form of transferable and automated error detection system compounded with a motor imagery system will augment the performance of a BCI and provide a better BCI-based neuro-rehabilitation protocol that has an error control mechanism embedded into it.

4.
Sci Rep ; 11(1): 17008, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34417494

RESUMO

In this paper we present, and test in two realistic environments, collaborative Brain-Computer Interfaces (cBCIs) that can significantly increase both the speed and the accuracy of perceptual group decision-making. The key distinguishing features of this work are: (1) our cBCIs combine behavioural, physiological and neural data in such a way as to be able to provide a group decision at any time after the quickest team member casts their vote, but the quality of a cBCI-assisted decision improves monotonically the longer the group decision can wait; (2) we apply our cBCIs to two realistic scenarios of military relevance (patrolling a dark corridor and manning an outpost at night where users need to identify any unidentified characters that appear) in which decisions are based on information conveyed through video feeds; and (3) our cBCIs exploit Event-Related Potentials (ERPs) elicited in brain activity by the appearance of potential threats but, uniquely, the appearance time is estimated automatically by the system (rather than being unrealistically provided to it). As a result of these elements, in the two test environments, groups assisted by our cBCIs make both more accurate and faster decisions than when individual decisions are integrated in more traditional manners.


Assuntos
Interfaces Cérebro-Computador , Tomada de Decisões , Percepção/fisiologia , Adulto , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Neurônios/fisiologia , Tempo de Reação/fisiologia , Análise e Desempenho de Tarefas
5.
J Healthc Eng ; 2021: 6632599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33791084

RESUMO

The last decade has witnessed extensive research in the field of healthcare services and their technological upgradation. To be more specific, the Internet of Things (IoT) has shown potential application in connecting various medical devices, sensors, and healthcare professionals to provide quality medical services in a remote location. This has improved patient safety, reduced healthcare costs, enhanced the accessibility of healthcare services, and increased operational efficiency in the healthcare industry. The current study gives an up-to-date summary of the potential healthcare applications of IoT- (HIoT-) based technologies. Herein, the advancement of the application of the HIoT has been reported from the perspective of enabling technologies, healthcare services, and applications in solving various healthcare issues. Moreover, potential challenges and issues in the HIoT system are also discussed. In sum, the current study provides a comprehensive source of information regarding the different fields of application of HIoT intending to help future researchers, who have the interest to work and make advancements in the field to gain insight into the topic.


Assuntos
Internet das Coisas , Atenção à Saúde , Instalações de Saúde , Humanos
6.
J Neural Eng ; 18(4)2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33780913

RESUMO

Objective.In many real-world decision tasks, the information available to the decision maker is incomplete. To account for this uncertainty, we associate a degree of confidence to every decision, representing the likelihood of that decision being correct. In this study, we analyse electroencephalography (EEG) data from 68 participants undertaking eight different perceptual decision-making experiments. Our goals are to investigate (1) whether subject- and task-independent neural correlates of decision confidence exist, and (2) to what degree it is possible to build brain computer interfaces that can estimate confidence on a trial-by-trial basis. The experiments cover a wide range of perceptual tasks, which allowed to separate the task-related, decision-making features from the task-independent ones.Approach.Our systems train artificial neural networks to predict the confidence in each decision from EEG data and response times. We compare the decoding performance with three training approaches: (1) single subject, where both training and testing data were acquired from the same person; (2) multi-subject, where all the data pertained to the same task, but the training and testing data came from different users; and (3) multi-task, where the training and testing data came from different tasks and subjects. Finally, we validated our multi-task approach using data from two additional experiments, in which confidence was not reported.Main results.We found significant differences in the EEG data for different confidence levels in both stimulus-locked and response-locked epochs. All our approaches were able to predict the confidence between 15% and 35% better than the corresponding reference baselines.Significance.Our results suggest that confidence in perceptual decision making tasks could be reconstructed from neural signals even when using transfer learning approaches. These confidence estimates are based on the decision-making process rather than just the confidence-reporting process.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia , Tomada de Decisões , Humanos , Redes Neurais de Computação , Tempo de Reação
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 3099-3102, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946543

RESUMO

We present a two-layered collaborative Brain-Computer Interface (cBCI) to aid groups making decisions under time constraints in a realistic video surveillance setting - the very first cBCI application of this type. The cBCI first uses response times (RTs) to estimate the decision confidence the user would report after each decision. Such an estimate is then used with neural features extracted from EEG to refine the decision confidence so that it better correlates with the correctness of the decision. The refined confidence is then used to weigh individual responses and obtain group decisions. Results obtained with 10 participants indicate that cBCI-assisted groups are significantly more accurate than groups using standard majority or weighing decisions using reported confidence values. This two-layer architecture allows the cBCI to not only further enhance group performance but also speed up the decision process, as the cBCI does not have to wait for all users to report their confidence after each decision.


Assuntos
Interfaces Cérebro-Computador , Tomada de Decisões , Comportamento Social , Humanos , Tempo de Reação
9.
Front Neurosci ; 11: 226, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28512396

RESUMO

Reliable detection of error from electroencephalography (EEG) signals as feedback while performing a discrete target selection task across sessions and subjects has a huge scope in real-time rehabilitative application of Brain-computer Interfacing (BCI). Error Related Potentials (ErrP) are EEG signals which occur when the participant observes an erroneous feedback from the system. ErrP holds significance in such closed-loop system, as BCI is prone to error and we need an effective method of systematic error detection as feedback for correction. In this paper, we have proposed a novel scheme for online detection of error feedback directly from the EEG signal in a transferable environment (i.e., across sessions and across subjects). For this purpose, we have used a P300-speller dataset available on a BCI competition website. The task involves the subject to select a letter of a word which is followed by a feedback period. The feedback period displays the letter selected and, if the selection is wrong, the subject perceives it by the generation of ErrP signal. Our proposed system is designed to detect ErrP present in the EEG from new independent datasets, not involved in its training. Thus, the decoder is trained using EEG features of 16 subjects for single-trial classification and tested on 10 independent subjects. The decoder designed for this task is an ensemble of linear discriminant analysis, quadratic discriminant analysis, and logistic regression classifier. The performance of the decoder is evaluated using accuracy, F1-score, and Area Under the Curve metric and the results obtained is 73.97, 83.53, and 73.18%, respectively.

10.
Eur J Transl Myol ; 26(2): 6041, 2016 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-27478573

RESUMO

Functional Electrical Stimulation (FES) provides a neuroprosthetic interface to non-recovered muscle groups by stimulating the affected region of the human body. FES in combination with Brain-machine interfacing (BMI) has a wide scope in rehabilitation because this system directly links the cerebral motor intention of the users with its corresponding peripheral muscle activations. In this paper, we examine the effect of FES on the electroencephalography (EEG) during motor imagery (left- and right-hand movement) training of the users. Results suggest a significant improvement in the classification accuracy when the subject was induced with FES stimuli as compared to the standard visual one.

11.
Med Biol Eng Comput ; 52(12): 1007-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25266261

RESUMO

The paper proposes a novel approach toward EEG-driven position control of a robot arm by utilizing motor imagery, P300 and error-related potentials (ErRP) to align the robot arm with desired target position. In the proposed scheme, the users generate motor imagery signals to control the motion of the robot arm. The P300 waveforms are detected when the user intends to stop the motion of the robot on reaching the goal position. The error potentials are employed as feedback response by the user. On detection of error the control system performs the necessary corrections on the robot arm. Here, an AdaBoost-Support Vector Machine (SVM) classifier is used to decode the 4-class motor imagery and an SVM is used to decode the presence of P300 and ErRP waveforms. The average steady-state error, peak overshoot and settling time obtained for our proposed approach is 0.045, 2.8% and 44 s, respectively, and the average rate of reaching the target is 95%. The results obtained for the proposed control scheme make it suitable for designs of prosthetics in rehabilitative applications.


Assuntos
Interfaces Cérebro-Computador , Eletroencefalografia/métodos , Imaginação/fisiologia , Reabilitação/instrumentação , Robótica/instrumentação , Adulto , Braço , Humanos , Máquina de Vetores de Suporte , Análise e Desempenho de Tarefas , Adulto Jovem
12.
Med Biol Eng Comput ; 52(2): 131-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24165805

RESUMO

Brain-computer interfacing (BCI) has been the most researched technology in neuroprosthesis in the last two decades. Feature extractors and classifiers play an important role in BCI research for the generation of suitable control signals to drive an assistive device. Due to the high dimensionality of feature vectors in practical BCI systems, implantation of efficient feature selection algorithms has been an integral area of research in the past decade. This article proposes an efficient feature selection technique, realized by means of an evolutionary algorithm, which attempts to overcome some of the shortcomings of several state-of-the-art approaches in this field. The outlined scheme produces a subset of salient features which improves the classification accuracy while maintaining a trade-off with the computational speed of the complete scheme. For this purpose, an efficient memetic algorithm has also been proposed for the optimization purpose. Extensive experimental validations have been conducted on two real-world datasets to establish the efficacy of our approach. We have compared our approach to existing algorithms and have established the superiority of our algorithm to the rest.


Assuntos
Inteligência Artificial , Eletroencefalografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Interfaces Cérebro-Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...